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Abstract

Over the past few years, research on remotemonitoring of animal behaviour bymeans of accelerom-
eters integrated in GPS collars considerably increased. Use of accelerometers allows for long-term
fine-scale behavioural measurements, which are extremely useful to study activity patterns. As the
values generated by accelerometers are strongly affected by individual factors, season-related envi-
ronmental effects, and the position of the collar on the animal, comparisons of accelerometer data
among different individuals and time-periods may yield misleading results. Researchers have to
find an easy-to-use method in order to turn accelerometer data into behavioural data, one which
enables them to take into consideration inter- and intra-individual variations. We propose an easy
individual-based method, which generates threshold values to distinguish between active and in-
active behaviours with no need of direct observation. By treating each animal independently and
adopting ad hoc temporal scales, this method is able to take into consideration the influence of indi-
vidual factor modifications (e.g., body size, collar tightness) on the data recorded by the accelerom-
eter. We validated this approach and showed its potential by testing it with an activity dataset from
26 free-ranging Alpine ibex (Capra ibex). We managed to distinguish between active and inac-
tive behaviours with a high percentage (93%) of correctly classified binary behavioural state. We
showed that, when the threshold values are calculated at a large temporal scale, the accuracy de-
creases and activity pattern predictions may yield misleading results. By adopting the method
proposed and by transforming the accelerometer data provided by the collars into time spent ac-
tive, it may be possible to analyse how the activity levels of the monitored individuals change over
the seasons, to appreciate fine variations of individual characteristics, and to compare the activity
patterns of different populations as well as of different species.

Introduction
Data on activity patterns are important as they provide key information
about animal biology and ecology such as foraging strategy, bioener-
getics, evolutionary adaptations, and responses to environmental cues
(McLellan and McLellan, 2015; Murray and St. Clair, 2015; Bloch et
al., 2013; Hut et al., 2013; Gleiss et al., 2011). Assessing the activ-
ity patterns of a species may help provide indices of its welfare and
accordingly identify critical challenges individuals have to face. Such
assessment thus potentially plays a crucial role in the development of
conservation and management strategies.
Measuring the activity patterns of free-ranging animals is often a

challenging task. Although direct observation is a powerful tool to doc-
ument animal behaviour, it poses several problems, especially during
periods of darkness (e.g., Willisch and Ingold, 2007), and has obvi-
ous limitations when dealing with elusive, forest-dwelling, and wide-
ranging species (e.g., Botts et al., 2020). Furthermore, direct obser-
vations of animal behaviour are time and manpower consuming and
can also be affected by different kinds of bias (Martin and Bateson,
2007). Technological advances now enable one to monitor animal be-
haviour throughout the 24-hr cycle and collect large amounts of tem-
poral high-resolution data, with no researcher needed in the field. Im-
provements in micro-electromechanical systems allowed the construc-
tion of accelerometers, i.e., spring-like piezoelectric sensors generat-
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ing a wave-like voltage signal which is proportional to the acceleration
(change in velocity) they experience (Brown et al., 2013). For biolog-
ical applications to studies on terrestrial mammals, accelerometers are
mainly integrated into activity sensors in Global Positioning System
(GPS) collars, which provide summary statistics of activity, calculated
by subtracting the static acceleration (gravity) component from the to-
tal acceleration values. Some of the most important collar factories
(e.g., Vectronic Aerospace, Lotek) chose to provide activity data as di-
mensionless values averaged over the duration of a programmed sam-
pling interval (hereinafter referred to as “averaged raw activity data -
ARAD”; Krop-Benesch et al., 2011). In so doing, they drastically re-
duced the battery and memory consumption due to activity data stor-
age, thus enabling their remote download.

In terrestrial mammals, the study of activity patterns by means of
ARAD was implemented by i) analysing ARAD directly provided
by GPS collars (e.g., Rabaiotti and Woodroffe, 2019; Brambilla and
Brivio, 2018; Grignolio et al., 2018; Brivio et al., 2017, 2016), ii)
processing ARAD to distinguish between active and inactive periods
(e.g., Petroelje et al., 2020; Becciolini and Ponzetta, 2018; Bose et
al., 2018; Isbell et al., 2017; McLellan and McLellan, 2015; Podol-
ski et al., 2013), iii) processing ARAD to distinguish among different
behavioural categories (e.g., Abáigar et al., 2018; Zhang et al., 2015;
Grünewälder et al., 2012; Löttker et al., 2009). As collar manufactur-
ers are unable to provide a standard classification system to turn collar
ARAD values into behavioural categories, researchers need to define
a classification system for their focal species in order to be able to dis-
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tinguish among different behaviours. The classification process con-
sists in correlating activity values to detailed behavioural observations
of collared animals and results in a mathematical model that can be
used to classify animal behaviours according to the activity data re-
motely collected from the collar. Thus, in order to transform data from
the collars into behavioural categories, direct observations are manda-
tory, though this may be a strong constraint for elusive wild species. To
overcome this constraint, direct observations of captive individuals and
a restricted number of free-living animals are conducted (e.g., Abáigar
et al., 2018; Gaylord et al., 2016; Löttker et al., 2009; Adrados et al.,
2003). However, on the one hand, the behaviour of captive individuals
may differ from that of wild living individuals, as several behavioural
patterns do not occur in captivity on account of the different environ-
mental and, often, social context. On the other hand, the age and sex
of an animal can affect the amount of movement associated with dif-
ferent behaviours, thus affecting the classification process (Löttker et
al., 2009; Coulombe et al., 2006; Gervasi et al., 2006). The inference
of behaviour by means of the classification process poses another crit-
ical issue: accelerometer data are strictly linked to the movement ex-
perienced by the sensor on the collar, which is obviously influenced
by animal motion as well as indirectly affected by several factors. Re-
cently, Dickinson et al. (2020) clearly showed that the tightness of the
collar on the animal neck strongly affected values recorded by the ac-
celerometer: a tight fit may help trigger the sensor more easily, thus
providing higher activity values. Conversely, a loose collar may slip
on the neck and not trigger the activity sensor while the animal is per-
forming certain actions. Consequently, modifications of animal body
size may introduce a strong bias, which so far has never been corrected
or accounted for. Ungulate body size modifications may be expected
as a consequence of weight loss during demanding seasons (Bassano
et al., 2003; Rughetti and Festa-Bianchet, 2011) or as a consequence
of diseases and poor body condition, while the increase of neck cir-
cumference is likely to occur during the rutting season (Lincoln, 2010;
Chapman and Chapman, 1997). Thus, finding a method which consid-
ers potential variations of collar fit throughout the monitoring period is
of utmost importance.

The approach we propose is a revision of the method developed
by Gervasi et al. (2006), which enables to analyse the activity of
collared mammals, thus overcoming the aforementioned constraints.
This method distinguishes between active and inactive behaviours by
analysing ARAD to identify a threshold value, with no need of further
calibration by using behavioural observation data. Recently, Gervasi et
al.’s method was used in the study of activity rhythms of large mam-
mals (Bonnot et al., 2019; de Gabriel Hernando et al., 2020). However,
to the best of our knowledge, the validation of the method proposed
by Gervasi et al. (2006) by means of direct observations was imple-
mented only on two captive brown bears (Ursus arctos). Therefore,
before this method can be confidently used for other species, includ-
ing species whose morphological and behavioural features differ from
those of bears, a more robust validation and a larger dataset of direct
observations of wild animals are necessary. Gervasi et al. (2006) ac-
knowledged that the tightness of the collar on the animal neck may
strongly affect the values recorded by the accelerometer. However, they
provided no suggestion to improve their method in the light of this is-
sue. Moreover, they validated it by using data from a short time period
(May-June), when the body conditions of the two bears were also not
likely to change. By consistently applying themethod proposed byGer-
vasi et al. (2006) biased results may be expected since modifications in
collar tightness strongly affect accelerometer data (see Dickinson et al.,
2020). For this reason, we proposed to refine the methodology by using
ad hoc temporal scale according to the species under analysis. In partic-
ular, temporal scales need to be chosen depending on the animal biol-
ogy and the environmental seasonality, so as to gather intra-individual
variations throughout the year.

The aim of this study was to validate Gervasi et al.’s method by mak-
ing a high number of direct observations of a large dataset of wild col-
lared animals over the year and by adopting different temporal scales.
We applied the method to an activity dataset from 26 free-ranging

Alpine ibex (Capra ibex, hereinafter referred to as “ibex”) fitted with
GPS collars equipped with accelerometers. Ibex is a polygynous ungu-
late that inhabits mountainous environments characterised by marked
seasonal changes. This species is characterized by extreme sexual di-
morphism (males may be more than 100% larger than females – Loi-
son et al., 1999) and significant body weight variations throughout the
year (Giacometti et al., 1997). Moreover, ibex mainly uses open ar-
eas (Brivio et al., 2019; Grignolio et al., 2004) and is easy to detect,
thus allowing for long observation sessions throughout the year (e.g.,
Mason et al., 2017; Apollonio et al., 2013). For these reasons, ibex is
an ideal case study for testing Gervasi et al.’s methodology by investi-
gating differences among different temporal scales used to distinguish
between active and inactive behaviours. We validated the method by
comparing the binary behavioural state which we obtained by process-
ing ARAD with direct observation data collected on collared individ-
uals of both sexes. We then evaluated the outcomes of the method at
different temporal scales by calculating and analysing the diurnal and
nocturnal active time of both males and females throughout the year.
We predicted a higher accuracy of the method with the decrease of the
temporal scale considered.

Methods
This study complied with all national and regional laws dealing with
ethics and animal welfare. Ibex capture and manipulation protocol was
approved by the Italian Ministry of Environment (Prot. No. 25114/04).

Study area

The study took place in the Levionaz Valley in North-Western Italy, a
steep glacial valley in the middle of the Gran Paradiso National Park
(GPNP: 45°35′ N, 7°12′ E). The study area, 1700 ha ranging from
1650 to 3300 m a.s.l., is characterised by alpine meadows (mainly Fes-
tuca and Poa spp.), wood patches of larch (Larix decidua), rock cliffs,
moraines, and glaciers (Grignolio et al., 2018, 2003). The local climate
is moist continental mid-latitude, with dry winter and snowfall mostly
occurring from November to April. The warmest period generally oc-
curs from June to September. Ibex are captured by chemical immo-
bilisation every year by park wardens and veterinarians, as part of the
GPNP conservation programs. At capture, ibex are aged by counting
horn annuli (von Hardenberg et al., 2004) and marked (colour-coded
ear tags and/or collars) for individual identification (see Brivio et al.,
2015 for further details). In order not to jeopardise the uniformity of
results, when fitting ibex with collars, we are extremely careful to fas-
ten the collars to a uniform extent among individuals, and not too tight
so as to ensure the animals’ welfare. Indeed, inappropriate collar fitting
was seen to be deleterious for the health of marked animals (Krausman
et al., 2004).

Data collection of telemetry data

From May 2013 to October 2019, we fitted 18 male and 8 female ibex
with GPS radio collars (GPS PRO Light collar, Vectronic Aerospace
GmbH, Germany), equipped with a dual-axis motion sensor (i.e., ac-
celerometer). The accelerometer measures simultaneously along 2 or-
thogonal directions the changes in acceleration associated with the ac-
tual motion experienced by the collar. On the X-axis, the accelerom-
eter was sensitive to acceleration events with forward/backward direc-
tion/axes, while, on the Y-axis, it recorded acceleration events with a
sideward and rotary direction. The accelerometer had a dynamic range
from -2g to +2g and measured activity as the change of static acceler-
ation (gravity) and dynamic acceleration (collar) with a frequency of
4 Hz. Motion data from accelerometers, i.e. activity values, were cal-
culated as the difference between consecutive measurements, averaged
over a time interval of 4 minutes and given within a relative range be-
tween 0 (no difference between consecutive data) and 255 (difference
of -2g/+2g), with the associated date and time. The activity value mea-
sured by the sensor depends directly on individual movements, but it
can also be indirectly affected by several factors. Among them, a cru-
cial role is played by collar tightness, which depends on the neck size

42



Intra-individual variability in accelerometer data

of the individual and, therefore, can be different for each ibex and even
for the same individual at different times (Dickinson et al., 2020). We
did not analyse data collected during the first 2 days after capture in
consideration of a previous study that showed alterations in ibex be-
havioural patterns during the first 48 hours following capture (Brivio
et al., 2015).

Active and inactive behaviour distinction from telemetry
data
To distinguish between active and inactive behaviours by using collar
ARAD we employed the individual-based method proposed by Ger-
vasi et al. (2006). For each collared ibex, we calculated the overall
activity for any point in time as the sum of the activity values recorded
by the accelerometer in the collar along the two orthogonal directions
(X axis + Y axis). We then grouped its range (0–510) into 51 activity
classes of 10 units and produced the frequency histograms to determine
whether its distribution was bimodal. Whenever histograms had a bi-
modal distribution, we defined the threshold value as the mean value
of the activity class with the lowest frequency in the range between the
2 peaks of the frequency distribution (see Fig.1 as an example). Ac-
tivity values lower than the threshold value were considered inactive,
whereas those higher than or equal to it were considered active. Un-
like Gervasi et al. (2006), who used the whole dataset to define the
threshold value for each individual, we repeated the same procedure
at finer temporal scales, since we expected changes in ARAD values
related to changes in collar tightness, which in turn depended on the
varying neck size of individuals. In fact, both their body and neck size
may change considerably throughout the year. Consequently, for each
ibex, we grouped collar ARAD over several time windows, namely for
each year, semester, season, two-month period, and month of data col-
lection. The definition of the different temporal scales considered the
biological cycle of ibex and the phenological cycle of the Alpine en-
vironment. We defined the semesters (from 1 April to 30 September
and from 1 October to 31 March), the seasons (spring: 1 March–31
May, summer: 1 June–31 August, autumn: 1 September–30 Novem-
ber, winter: 1 December–28 February) and the two-month periods (1
December–31 January, 1 February–31 March, 1 April–31 May, etc.).
By using this classification, we ensure the inclusion of the mating sea-
son (December-January) and the birth period (June-July, as indicated
by Apollonio et al., 2013) within a single semester/season/two-month
period. For each temporal scale, we plotted the frequency distribution
of all activity classes to determine whether it was bimodal so as to find
the corresponding threshold value as described above. Whenever the
frequency distribution was not bimodal, we adopted a new approach
of analysis by extending the reference period and adding 15-day time
spans before and after the starting and ending dates, until we found a
bimodal distribution frequency.

Observational data
We carried out direct observations of collared ibex, which were
equipped with coloured collars for individual identification from long
distances, concomitantly with collar measurements. Females were ob-
served from June to October 2014, while males were observed during
two distinct periods: fromMay 2015 to January 2016 and fromNovem-
ber 2017 to April 2018. Observations were conducted with the Focal
Animal Sampling method (Altmann, 1974) by means of binoculars and
spotting scopes from such a distance (at least 200 meters) that ibex be-
haviour would not be influenced by the presence of the observers. The
focal individual was observed continuously for at least 1 hour, during
which we recorded its behaviour and the time of changes in the be-
havioural states that were maintained for at least 1 min. We uniformly
distributed the observation times over the daylight hours and among
collared ibex.
Each focal individual observation was sequenced in the same 4-

minute periods used by the activity sensor in the GPS collars to record
the activity values. Then, each 4-minute sequence was classified as ei-
ther inactive when the ibex spent>75% of the observed time sleeping,
resting, and standing or active when the ibex was feeding, grooming,

Figure 1 – Frequency distribution of activity classes recorded over a month (July 2013) on
a male Alpine ibex (ID 12228) fitted with GPS collar and a dual-axis motion sensor in the
Gran Paradiso National Park (Italy). The distribution shows the typical pattern in which the
data fall into two clusters; the cluster on the left includes data logged when the animal
was standing still or lying down (“inactivity”), while the cluster on the right includes data
logged when the animal was grazing, walking, or running (“activity”). The arrow indicates
the threshold value used to classify the active/inactive status (see text for more details).

interacting, ormoving for>75%of the observed time. All 4-minute pe-
riods in which ibex spent <75% in either active or inactive behavioural
state were discarded from the subsequent analysis.

Validation
We compared the binary behavioural state (active-inactive) obtained
from the observational data with those provided by the dual-axis mo-
tion sensor categorised by using the threshold procedure to test their
correspondence and validate the threshold values obtained at the dif-
ferent temporal scales considered. To calculate the 95% confidence in-
terval (CI) for the correspondence values, we applied a non-parametric
bootstrap with replacement (1000 iterations) on the data for each tem-
poral scale considered, i.e. year, semester, season, two-month period,
and month. The bootstrap procedure and the confidence interval calcu-
lation were implemented by using the boot package (Canty and Ripley,
2017) in R (version 3.0.2; R Core Team, 2016).

Annual trends of diurnal and nocturnal active time
For each ibex, all ARAD recorded by the collars and the corresponding
binary behavioural state (active-inactive) obtained from the dual-axis
motion sensor by means of the threshold values were classified as ei-
ther diurnal or nocturnal according to the recording date and time and
the corresponding sunrise and sunset times (obtained from the National
Oceanic & Atmospheric Administration https://www.noaa.gov/): activ-
ity values recorded between sunrise and sunset of day i fell into the
diurnal activity subset of day i, while those recorded between sunset
of day i and sunrise of day i+1 fell into the nocturnal activity subset of
day i. After splitting activity data into the two subsets (diurnal and noc-
turnal), we transformed the binary behavioural state (active-inactive)
into: i) proportion of active time during daylight hours (Diurnal Active
Time, DAT) and ii) proportion of active time during nocturnal hours
(Nocturnal Active Time, NAT), for each day of data collection and each
collared ibex. DAT and NAT were calculated as the number of activ-
ity values classified as active divided by the total number of activity
values during daylight and nocturnal hours, respectively. In order to
examine the patterns of active time variations throughout the year, we
fitted Generalized Additive Mixed Models (GAMMs) by using DAT
and NAT as response variables and Julian date as predictor variable.
The Julian date was modelled as a cyclic cubic regression spline in or-

43



Hystrix, It. J. Mamm. (2021) 32(1): 41–47

der to take into account the circularity of this variable: in so doing,
we ensured that the value of the smoother at the far-left point (1 Jan-
uary) was the same as the one at the far-right point (31 December).
Ibex identity was used as a random factor to control for repeated mea-
surements of the same individual by fitting it in the GAMMs by using
“re” terms and smoother linkage (Wood, 2013). GAMMs were imple-
mented within the mgcv package (version 1.8–10 in R). We repeated
the same analysis for each temporal scale considered (year, semester,
season, 2 months, and 1 month) in order to evaluate and compare the
results obtained from the different temporal frames.

Results
The total number of animal/day accelerometer data recorded by means
of the GPS collars was 5478 and 5796 for males and females, respec-
tively. We directly observed 8 collared males and 8 collared females,
obtaining a total of 688 and 199 hours of observation for males and
females, respectively.
All frequency distribution plots obtained by using the annual, bian-

nual, and seasonal temporal scales were bimodally distributed (see
Fig.1 as an example). When using the monthly and bimonthly tem-
poral scale, 3% of the frequency distribution plots did not show a bi-
modal distribution. In these cases, by enlarging the period of reference
of a month (47% of cases, N=8), two months (41% of cases, N=7), and
three months (12% of cases, N=2), we obtained a bimodal distribution,
thus enabling the calculation of a threshold value for each time inter-
val. The calculated threshold values ranged from 15 to 85 when using
the monthly and bimonthly temporal scale, from 15 to 75 when using
the seasonal temporal scale, and from 15 to 65 when using the biannual
and annual temporal scale.
For all the temporal scales considered, we found a high positive cor-

respondence between the sensor-derived and the activity data observed
for each collared ibex. The mean percentage of correct classification
was 91.87% (CI: 91.33–92.40), 92.70% (CI: 92.18–93.22), 93.02%
(CI: 92.52–93.52), 93.01% (CI: 92.51–93.54), and 92.98% (CI: 92.49–
93.48) for the annual, biannual, seasonal, bimonthly, and monthly tem-
poral scales, respectively (see Tab. 1 for more details).
By transforming the sensor-measured activity into proportion of ac-

tive time, we found that the time ibex spent active was different dur-
ing daylight and nocturnal hours, with different patterns of variation
throughout the year. The annual DAT and NAT patterns estimated by
using the threshold values calculated at different temporal scales were
similar: the main differences were found when using the annual and the
biannual scales for both males and females (Fig.2). Male DAT showed
three peaks throughout the year, with the highest one around the 129th–
137th day of the year. The lowest DAT peaks occurred around the 75th,
207th, and the 315th day of the year (Fig.2a). Female DAT showed
three positive peaks, the highest one occurring slightly earlier than that
of males, i.e., around the 123rd day of the year. Likewise, the nega-
tive peaks were reached earlier with respect to males, i.e., around the
64th, 182nd, and 312nd day of the year (Fig.2c). Male NAT reached the
minimum value around the 54th day of the year and then progressively
increased until the 214th day (Fig.2b). After this peak, NAT progres-
sively decreased until reaching another negative peak around the 54th
day of the following year. Likewise, the minimum value of female NAT
was reached around the 43rd day of the year, while the maximum one
was reached the 289th day of the year, i.e., later than males (Fig.2d).
Activity pattern predicted by the using the threshold values calculated
with the annual temporal scale showed the maximum activity around
the 185th day of the year.

Discussion
The methodology proposed to determine activity patterns from val-
ues generated by accelerometer sensor in GPS collars provided a re-
liable identification of the activity status of the individuals monitored.
Threshold values generated by analysing sensor data enabled us to dis-
tinguish between active and inactive behaviours with a high percent-
age of correctly classified binary behavioural state (93%). Our results

Table 1 – Correspondence values and their 95% confidence intervals for all the temporal
scales considered. Data were analysed both separately for each sex and with the sexes
pooled.

Temporal scale Sex Value Confidence interval

Months Males 93.75 93.19–94.29
Females 90.72 89.57–91.82

Total 92.98 92.49–93.48

Two months Males 93.70 93.14–94.23
Females 90.99 89.89–92.10

Total 93.01 92.51–93.54

Season Males 93.73 93.19–94.27
Females 90.95 89.85–92.04

Total 93.02 92.52–93.52

Semester Males 93.46 92.92–94.00
Females 90.49 89.39–91.65

Total 92.70 92.18–93.22

Year Males 92.63 92.05–93.23
Females 89.63 88.40–90.81

Total 91.87 91.33–92.40

are consistent with a previous study which tested the methodology on
two captive brown bears (Gervasi et al., 2006). The performances of
the method can be compared to those obtained in studies conducted
on other species by using more complex methods, which reported an
overall accuracy ranging from 83% to 92% (Becciolini and Ponzetta,
2018; Signer et al., 2010; Bourgoin et al., 2008; Coulombe et al., 2006;
Adrados et al., 2003). Moreover, we highlighted that, by adopting an ad
hoc fine temporal scale in data analysis, the approach proposed enables
us to take into consideration the influence of individual factor modifi-
cations (e.g., body size) on the values recorded by the activity sensor
during the monitoring period.

The method proposed is an easy-to-use technique that will greatly
benefit researchers and technicians who are using accelerometers to
quantify the activity of terrestrial mammals monitored by means of the
most common GPS collars. The main advantage of this method is that
it does not require any further on-field procedure (e.g., observational
data to classify the data from activity sensor) before starting the anal-
ysis of activity data. As such, this technique can be implemented for
any case study, including the analysis of activity patterns of nocturnal,
wide-ranging, and elusive mammals, which are obviously difficult to
observe. Moreover, this method overcomes potential biases that may
arise from the classification process (i.e., correlation of activity sen-
sor values to behavioural observations). For instance, during this pro-
cess it was shown that mismatches between collar activity sensor data
and direct behavioural observation data may occur on account of fail-
ures in the time-keeping mechanisms of the GPS collars, thus resulting
in inaccurate classification models (Gaylord and Sanchez, 2014). Fur-
thermore, during the classification process behavioural observations
are generally conducted on a restricted number of individuals and then
used to infer behaviour from activity sensor output for a larger num-
ber of free-living individuals (e.g., Löttker et al., 2009; Bourgoin et al.,
2008; Adrados et al., 2003). This may result in biased results, since in-
dividual factors (e.g., sex, age, and body size) can affect the amount of
movement associated with different behaviours and, therefore, the val-
ues recorded by the activity sensor (Löttker et al., 2009; Coulombe et
al., 2006; Gervasi et al., 2006). By treating each individual indepen-
dently, the proposed method is able to account for the influence of indi-
vidual characteristics on activity sensor data. This issue should not be
neglected by researchers: when we used fine temporal scales, we found
that monthly threshold values ranged from 15 to 85, thus highlighting
a tangible difference in the accelerometer response among individuals
and months. For these reasons, we recommend that individual-based
methods be always used for classification procedures.
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Figure 2 – Values predicted by the Generalised Additive Mixed Models (see the text for more details) of Diurnal Active Time (a-c) and Nocturnal Active Time (b-d) of Alpine ibex in the
Gran Paradiso National Park (Italy). The figure shows the e�ects of the Julian date. In each graph, the coloured lines represent diurnal and nocturnal active time calculated by using
threshold values determined at di�erent temporal scales: blue=annual, red=biannual, violet=seasonal, yellow=bimonthly, and green=monthly. The colour-shaded areas are the standard
errors estimated by the model.

Among the individual characteristics, the fit of the collar around
the neck strongly influences how easily the activity sensor is triggered
by animal movements, thus affecting the values recorded by the ac-
celerometer (Dickinson et al., 2020). For example, a tight fit (i.e., when
the collar is close-fitting on the animal neck) may help trigger the sen-
sor more easily and provide higher activity values. On the contrary, a
loose fit (i.e., when the collar is too large for the animal neck) may allow
the collar to slide on the neck rather than trigger the activity sensor dur-
ing certain behaviours (Coulombe et al., 2006; Dickinson et al., 2020).
How tight a collar is fastened can vary depending on how the collar was
adjusted on the animal neck during the capture, but it can also change
for the same individual on account of variations of its body weight and
conditions during the monitoring period. For instance, this may be due
to seasonality in capital species and disease. Moreover, season-related
environmental effects (e.g., weather conditions, plant phenology) as
well as the species-specific habits and biology have to be considered
when inferring behaviour in animals, since they may produce signif-
icant alterations in the intensity of activity (Becciolini and Ponzetta,
2018). Therefore, researchers should be careful in analysing activity
data collected by accelerometers throughout long periods of time as
it may be necessary to correct collar ARAD and analyse them at fine
temporal scale, chosen depending on the animal biology and the envi-
ronmental seasonality.
Our approach allows to take into consideration changes related to

variation of individual factors, animal biology, and the effect of envi-
ronmental conditions, by adopting ad hoc temporal scales to generate
the threshold values used to distinguish between active and inactive sta-
tuses. In testing the methodology on the ibex dataset, we expected its
accuracy to increase with the decrease of the temporal scale considered.
Contrary to our expectation, the percentage of correct classification in
ibex resulted to be slightly dependent on the temporal scale. Only when
pooling the accelerometer data of a whole year, the performance of the
method significantly decreased. By reducing the temporal resolution
from biannual to monthly level, we did not find any significant im-
provement in the classification procedure. This was likely caused by

the fact that the low percentage of wrong classification (8–9%) might
be mostly due to sampling constraints. Mismatches between recording
time of the observational data and sensor data may have occurred as
a consequence of failures in the time-keeping mechanisms of the GPS
collars (Gaylord and Sanchez, 2014). Moreover, it is worth noting that
the activity sensor data are averaged over a 4-minute time period, dur-
ing which an individual can perform different actions and switch from
an active to an inactive status. Therefore, we argue that the variabil-
ity in the accuracy of classification in our test might be mostly due to
sampling constraints which overmatched the variability owing to the
temporal scale used.

By using the threshold values, we were able to transform the collar
ARAD of the accelerometer in proportion of time spent active by each
monitored individual. This metric enabled the researchers to investi-
gate the behavioural pattern of ibex throughout the year, taking into
account this species’ typical annual variation of body mass (i.e., more
than 40% from autumn to spring, Giacometti et al., 1997). Predictions
of the annual activity pattern of the monitored individuals were quite
similar when using threshold values calculated at different temporal
scales. However, differences were found when using threshold values
calculated by gathering accelerometer data at an annual and biannual
level, predicting significantly different peaks of activity throughout the
year. Though our results apply to ibex, a similar approach may be ap-
plied to other animals in accordancewith their biology and annual cycle
(e.g., the neck circumference of male red deer (Cervus elaphus) and fal-
low deer (Dama dama) increases during the rutting season – Lincoln,
2010; Chapman and Chapman, 1997). We argue that, by adopting ad
hoc temporal scales, researchers may be able to better predict the ac-
tivity patterns of the species studied by taking into consideration fine
variations of individual characteristics, thus ensuring an improved un-
derstanding of behavioural patterns of the animals monitored.

It is worth noting that the activity sensors (i.e., accelerometers) inte-
grated inGPS collarsmostly used in largemammals provide a summary
statistic of acceleration, averaged over the duration of a programmed
sampling interval. The identification of specific behaviours (e.g., feed-
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ing, standing, moving, lying) would require data to be collected with
different modalities. Recently, manufacturers of collars provided the
opportunity to obtain raw activity data, i.e., each variation in accelera-
tion recorded by each sensor. To do so, collars need to be retrieved by
either using the drop-off system or re-capturing the marked animals.
By recording the total acceleration on three axes and analysing contin-
uous acceleration data (e.g., by looking for patterns in the waveforms
of accelerometers data), the performance of classification may be con-
siderably improved in terms of both percentage of correct classifica-
tion and number of behavioural categories identified (e.g., Nathan et
al., 2012; Shepard et al., 2008). Although this technique may provide
deeper insights into animal activity patterns, it requires more complex
and time-consuming statistical analyses (e.g., time machine learning
techniques), which take several days of computer time.

Conclusions
GPS collars combined with activity sensor (i.e., accelerometer) repre-
sent an effective technique to track movements of free-living animals
and, at the same time, to infer on their behavioural state. The use of
threshold values calculated at a fine temporal scale proved useful to dis-
tinguish between active and inactive behaviours so as to transform col-
lar ARAD into biological meaningful variables (i.e., time spent active).
The analysis of time spent active instead of collar ARAD is a more cor-
rect approach to investigate and compare activity levels of individuals
monitored in different study areas where capture and marking activities
are performed differently, likely resulting in collars positioned differ-
ently on animal necks. Moreover, by transforming collar ARAD into
time spent active, it may be possible to compare activity patterns of
different species and thus, for instance, analyse prey-predator relation-
ship by looking at the activity of both with the same methodology and
a high comparability of results. Furthermore, once defined the indi-
vidual status from the accelerometer data it may be possible to allocate
each GPS location to active or inactive behaviours. This may enable to
conduct fine scale resource selection analysis in order to clearly iden-
tify habitats selected for resting and performing their activities (see also
Adrados et al., 2003). In turn, this may foster the development of more
appropriate strategies for species management and conservation.
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